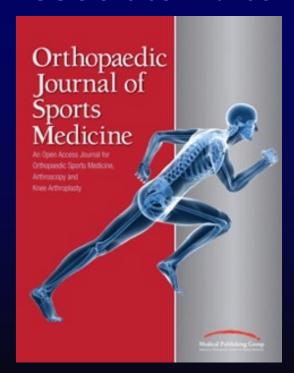
Best Graft for Patients With High Grade Laxity?

Daniel C. Wascher, M.D.


Department of Orthopaedics
University of New Mexico

Disclosures

- Fellowship Support
 - Arthrex
- Editorial Board
 - AJSM
 - J of Knee Surgery
- Board of Directors
 - ISAKOS

Associate Editor

What is "High Grade" Laxity?

Grade D IKDC Evaluation

Lachman or
Anterior Drawer > 10mm
and/or
3+ Pivot Shift

Magnussen, Arhtroscopy 2016

Presentation of High Grade Laxity

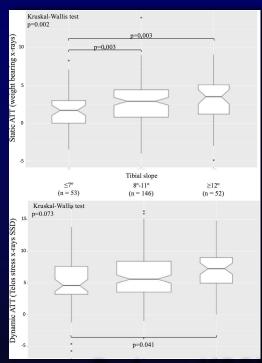
Isolated 3+ Pivot Shift
More Common than
Isolated Lachman > 10 mm

Isolated Anterior Drawer > 10 mm is Rare

Magnussen, Arthroscopy 2016

Factors Associated with High Grade Lachman

Risk Factor	Odds Ratio (95% CI)	Significance
Age less than 20 years	1.16 (0.86–1.56)	p = 0.33
Female Sex	1.14 (0.87 – 1.50)	p = 0.34
Body Mass Index over 25 kg/m ²	0.99 (0.72 – 1.31)	p = 0.93
Generalized Ligamentous Laxity	2.33 (1.59 – 3.42)	p < 0.001
Medial Meniscus Tear	1.63 (1.25 – 2.13)	p < 0.001
Lateral Meniscus Tear	1.41 (1.07 – 1.84)	p = 0.013
Chronic (>6 months) Relative to Acute (<3 months) ACL Injuries	2.99 (2.20 - 4.07)	p < 0.001


Factors Associated with High Grade Pivot Shift

Risk Factor	Odds Ratio (95% CI)	Significance
Age less than 20 years	1.34 (1.04 – 1.72)	p = 0.023
Female Sex	1.49 (1.18 – 1.88)	p = 0.001
Body Mass Index over 25 kg/m ²	0.89 (0.69 – 1.13)	p = 0.33
Generalized Ligamentous Laxity	3.46 (2.38 – 5.05)	p < 0.001
Medial Meniscus Tear	1.53 (1.21 – 1.94)	p < 0.001
Lateral Meniscus Tear	1.27 (1.01 – 1.61)	p = 0.041
Chronic (>6 months) Relative to Acute (<3 months) ACL Injuries	2.71 (2.04 - 3.61)	p < 0.001

Effect of Tibial Slope

Greater Tibial Slope
Increased Static
And Dynamic
Anterior Tibial Translation
But Not Pivot Shift
In ACL Injured Knees

DeJour, KSSTA 2019 Batty, OJSM 2021

Effect of Tibial Slope

Posterior Slope
> 9°
Had 2.35x Risk
Of High-Grade
Pivot Shift
(≥ 2+)

Batty, OJSM 2021

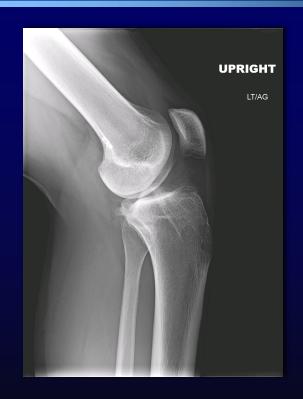
Role of Anterolateral Ligament

ALL Injury is
More Frequent in
Patients With
Higher Pivot Shift

	Positive ALL injuries	Negative ALL injuries	p value**
Overall	ACL injuries		
Pivot s	shift grade		
0	13	22	0.0005
1	31	22	
2	50	13	
3	12	6	

Summary of Risk Factors

Chronic Injury (> 6 Months)


Generalized Laxity

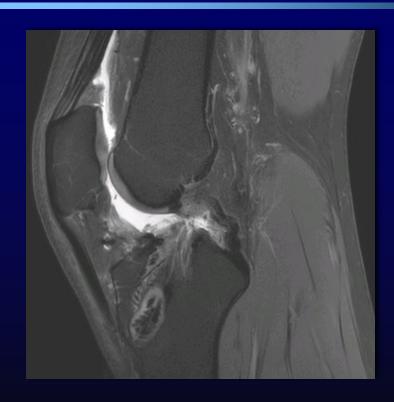
Meniscal Tear

(? Any, Ramp, Root)

Higher Posterior Tibial Slope

ALL Injury

Does Pre-operative Laxity Matter?


YES!!!
High Grade
Pre-Operative Laxity
Increased Risk of
Revision Within
6 Years

High-grade laxity	Odds Ratio	95% Confidence Interval	Significance
3+ Pivot-shift	1.75	1.19 - 2.54	p = 0.002
Lachman > 10mm	1.76	1.10 - 2.80	p = 0.020
Anterior Drawer > 10mm	1.60	0.92 - 3.32	p = 0.098
Any one of the above	1.73	1.19 - 2.51	p = 0.004

Revision ACL

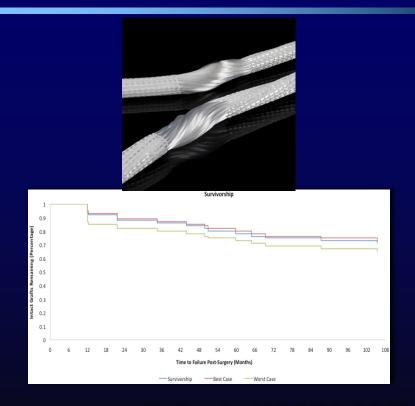
Patients with
Failed ACL Reconstruction
Often Have
High Grade
Laxity

Ideal Graft

Strong
Stiff
Rigidly Fixed
Quickly Incorporated
Durable
No Donor Site Morbidity

Graft Options

Autograft
Bone-Patellar Tendon-Bone
Hamstring
Quadriceps Tendon
Allograft
Synthetic



Synthetic

Strong and No Need for Incorporation

Not Durable
LARS - 33.3% Failure Rate
At 7 year f/u
Reactive Synovitis
20%

Tulloch, KSSTA 2019

Allograft

Large
No Donor Morbidity

Processing Affects Strength
Slower Incorporation
Higher Failure Rate in
Younger patients

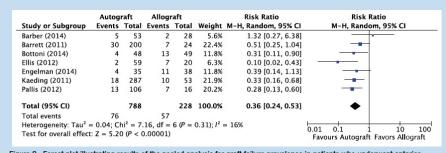


Figure 2. Forest plot illustrating results of the pooled analysis for graft failure prevalence in patients who underwent anterior cruciate ligament reconstruction using autograft versus allograft.

Autograft 9.8% Allograft 25.0%

Wasserstein, Sports Health 2015

Hamstring

Large Cross-Section
Stiff & Strong
(If Quadrupled)

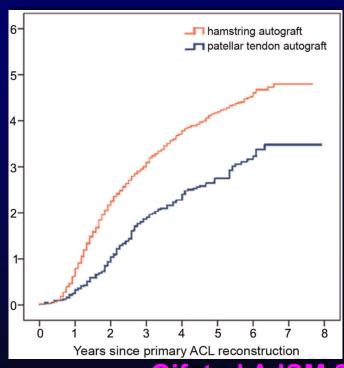
Slower Incorporation
Variable Size
6.8 x Failure Rate
With Size ≤ 8mm

Conte, Arthroscopy 2014

Bone-Patellar Tendon-Bone

Strong
Stiff
Rapid Incorporation

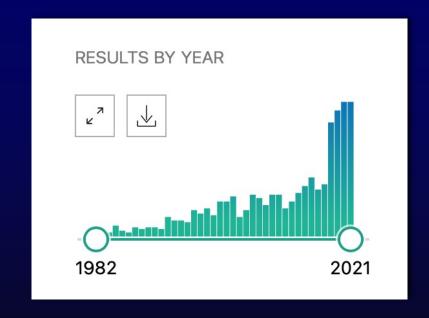
Donor Site Morbidity



B-PT-B vs Hamstring

Higher Failure Rate
In Scandanavian Registries

MOON Group:
Hamstring Failures
2x in Young Active Patients
When Controlling for Laxity


Gifstad AJSM 2014 Spindler, AJSM 2020

Quadriceps Tendon Autograft

Marked Increase In Usage Over Past 10 Years

Dissatisfaction with BTB or HS Grafts

Quadriceps Tendon

Strong
2,185 vs 1,580 N
Large Cross-Section
91.2 vs 48.4 mm²
Stiff
466 vs 278 N/mm

Less Donor Site Morbidity

Shani, Arthroscopy 2016

QT-Bone vs. Soft Tissue QT

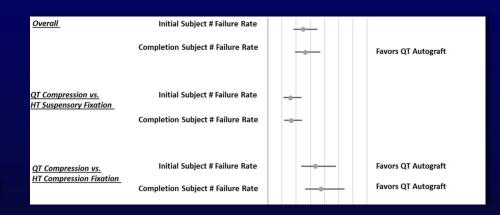
Bone Versus All Soft Tissue Quadriceps Tendon Autografts for Anterior Cruciate Ligament Reconstruction: A Systematic Review

Raphael J. Crum, B.S., Jeffrey Kay, M.D., Bryson P. Lesniak, M.D., Alan Getgood, M.Phil., M.D., F.R.C.S(Tr&Orth), DipS.E.M., Volker Musahl, M.D., and Darren de SA, M.D., F.R.C.S.C., M.B.A(c)

Similar Outcomes Higher Rate of + Pivot Shift in QT-B

Crum, Arthroscopy 2021

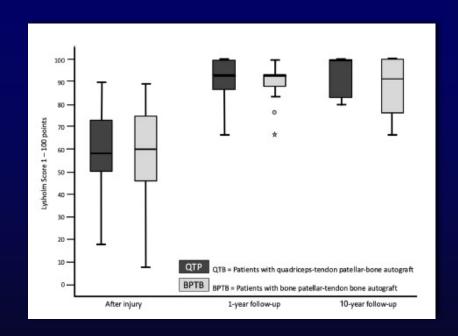
Systematic Review: Quad Tendon vs. Patellar Tendon


	nQT:BPTB	Mean difference (95% CI)QT – BPTB	Risk ratio (95% CI)QT:BPTB	P value
Side-to-side difference, mean	248:311	-0.18 (-0.65 to 0.29)		0.45
Side-to-side difference >3 mm	518:413		0.77 (0.49 to 1.18)	.23
Lachman grade 0	390:316		1.02 (0.91 to 1.14)	.76
Lachman grade 0 or 1	390:316		1.00 (0.97 to 1.03)	.79
Pivot-shift grade 0	416:341		1.04 (0.98 to 1.1)	.23
Pivot-shift grade 0 or 1	390:316		1.00 (0.97 to 1.02)	.85
Lysholm score, mean	357:459	-0.81 (-1.77 to 0.15)		.10
Objective IKDC A or B	328:427		0.97 (0.92 to 1.02)	.20
Subjective IKDC, mean	168:252	2.08 (-2.38 to 6.55)		.36
Donor-site pain	439:287		0.25 (0.18 to 0.36)	<.00001
Graft failure	439:287		0.72 (0.28 to 1.84	.50

^aIKDC, International Knee Documentation Committee. Bolded values indicate significant difference.

Systematic Review: Quad Tendon vs. Hamstring

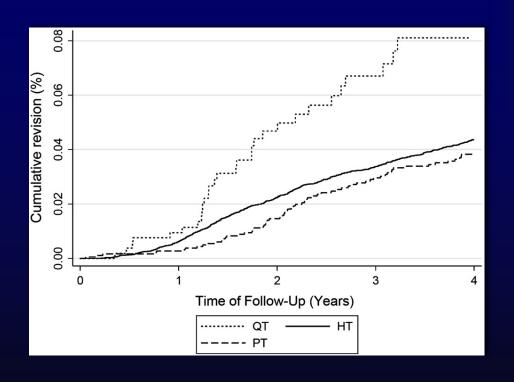
Quad Tendon Had
Less Pivot Shift Laxity
And
Lower Failure Rates
Especially if HS Femoral Fixation
With Compression Screw



B-PT-B vs Quad Tendon RCTs

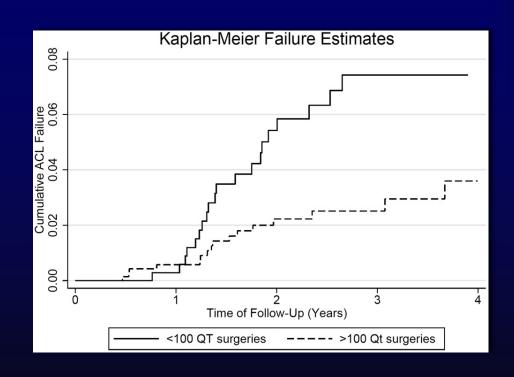
Equal Outcomes

Less Donor Site Morbidity



Lind, Br J Sports Med, 2020 Barie, Arch Ortho Trauma 2021

Danish Knee Ligament Registry


Significantly Higher Revision Rate with QT Graft

Experience Matters

Much Higher
Revision Rate for
QT ACLR
In Centers That
Performed Fewer Than
100 QT Surgeries
Over 8 Year Period

Lind, KSSTA 2021

My Recommendations

- Treat Associated Lesions (ALL, Menisci)
- Never Use Synthetic or Allografts
- Avoid Hamstrings in High Grade Laxity
- B-PT-B or Quad Tendon for Most
- Quad Tendon for Revisions or Kneelers

Quadriceps Tendon

I'll try anything once, twice if I like it, three times to make sure.

(Mae West)

ızQuotes

Merei Beaucoup II

